
Binghamton

University

CS-220

Spring 2015

Link Edits and
Relocatable Code

Computer Systems Chapter 7.4-7.7

Binghamton

University

CS-220

Spring 2015

gcc –g –o ttt ttt.c

ttt.c gcc ttt

ttt.s ttt.o

AssemblerCompiler

Pre-Processor Linker

Binghamton

University

CS-220

Spring 2015

gcc –g –o ttt ttt.c

main.c gcc cmd

main.o

AssemblerCompiler

Pre-Processor Linker
util.c

util.o
util.h

Binghamton

University

CS-220

Spring 2015

Example: main.c preamble

#include <stdio.h>

#include <string.h>

#include "util.h“

char globalBuffer[128];

char globalBufferInit[128]=

"Hello World... This is an initialized global variable value";

char * mainFunc(char * arg1,char *arg2);

Binghamton

University

CS-220

Spring 2015

Example: util.h

char * utilFunc(char *p1,char *p2);

Binghamton

University

CS-220

Spring 2015

Example: main.c main function

int main(int argc, char **argv) {

char localBuffer[128]; int i;

sprintf(localBuffer,"num args is %d",argc);

strcat(globalBufferInit,localBuffer);

globalBuffer[0]=0x00;

for (i=0; i<argc; i++) { strcat(globalBuffer,argv[i]); }

utilFunc(globalBufferInit,localBuffer);

printf("%s %s %s\n",

localBuffer,globalBuffer,mainFunc(globalBufferInit,localBuffer));

return 0;

}

Binghamton

University

CS-220

Spring 2015

Example: main.c mainFunc function

char * mainFunc(char * arg1,char *arg2) {

return arg1;

}

Binghamton

University

CS-220

Spring 2015

Example: util.c

#include <string.h>

char globUtilBuf[128];

char globUtilBufInit[128]="This is a global in util.h";

char * utilFunc(char *p1,char *p2) {

char locUtilBuf[128];

strcpy(p1,locUtilBuf);

strcat(locUtilBuf,globUtilBufInit);

strcpy(locUtilBuf,globUtilBuf);

return globUtilBuf;

}

Binghamton

University

CS-220

Spring 2015

Example: Makefile

cmd: main.outil.o

gcc-g -m32 -o cmd main.o util.o

main.o: main.c util.h

gcc-g -m32 -c -o main.o main.c

util.o: util.c util.h

gcc-g -m32 -c -o util.o util.c

clean :

-rm util.o main.o cmd

Binghamton

University

CS-220

Spring 2015

ELF File Format – used for .o files

ELF Header

Program Header Table

.text

.rodata

…

.data

Section Header Table

Binghamton

University

CS-220

Spring 2015

“Reading” ELF files : objdump

• -f : Interpret ELF header

• -h : List section headers (table of contents)

• -d / -D : Disassemble x86 binary code (.text) segment

• -t/-T : Interpret symbol table

• -s : dump everything in hex
• -j<section> to restrict to a specific section

• -r : dump relocation records

Binghamton

University

CS-220

Spring 2015

ELF Header Information
> objdump-f main.o

main.o: file format elf32-i386

architecture: i386, flags 0x00000011:

HAS_RELOC, HAS_SYMS

start address 0x00000000 >objdump –f cmd

cmd: file format elf32-i386

architecture: i386, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x080483c0

Binghamton

University

CS-220

Spring 2015

Relocatable vs. Fixed Object Code

Relocatable

• References are in terms of
offsets from registers (e.g.
%esp and %ebp or %eip)

• Certain references remain
references to symbols which
must be resolved when loaded

• Can be loaded anywhere in
memory

Unrelocatable–Position Dependent

• References are fixed addresses
as well as offsets from registers

• All references have been
resolved –no references to
symbols… only addresses

• Can only be loaded in one
specific place in memory

Binghamton

University

CS-220

Spring 2015

Why Relocate?

• Keep object code flexible

• One object file can be used in multiple commands

• Might end up at different locations for different commands

• But relocatable object code is NOT executable!

• All symbolic references MUST be resolved before execution can
take place!

Binghamton

University

CS-220

Spring 2015

main.o: file format elf32-i386

Sections:

Idx Name Size VMA LMA File off Algn

0 .text 000000df 00000000 00000000 00000034 2**2

CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

1 .data 00000080 00000000 00000000 00000120 2**5

CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000000 00000000 00000000 000001a0 2**2

ALLOC

3 .rodata 00000019 00000000 00000000 000001a0 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

…

Binghamton

University

CS-220

Spring 2015

Constant
in instruction

(.text)

Example: main.c
char globalBuffer[128];

char globalBufferInit[128]=

"Hello World... This is an initialized global variable value";

int main(int argc, char **argv) {

char localBuffer[128]; int i;

sprintf(localBuffer,"num args is %d",argc);

strcat(globalBufferInit,localBuffer);

globalBuffer[0]=0x00;

for (i=0; i<argc; i++) { strcat(globalBuffer,argv[i]); }

utilFunc(globalBufferInit,localBuffer);

printf("%s %s %s\n",

localBuffer,globalBuffer,mainFunc(globalBufferInit,localBuffer));

return 0;

}

Parameters
in stack

Dynamic Local Variables
in stack

Uninitialized Global
in .bss

Initialized Global
in .data

Constant
in .rodata

Binghamton

University

CS-220

Spring 2015

objdump –s –j.data main.o

Contents of section .data:

0000 48656c6c 6f20576f 726c642e 2e2e2054 Hello World... T

0010 68697320 69732061 6e20696e 69746961 his is an initia

0020 6c697a65 6420676c 6f62616c 20766172 lized global var

0030 6961626c 65207661 6c756500 00000000 iable value.....

0040 00000000 00000000 00000000 00000000

0050 00000000 00000000 00000000 00000000

0060 00000000 00000000 00000000 00000000

0070 00000000 00000000 00000000 00000000

Binghamton

University

CS-220

Spring 2015

objdump –s –j.rodata

Contents of section .rodata:

0000 6e756d20 61726773 20697320 25640025 num args is %d.%

0010 73202573 2025730a 00 s %s %s..

Binghamton

University

CS-220

Spring 2015

objdump –d main.o

Disassembly of section .text:

00000000 <main>:

0: 55 push %ebp

…

c: 8b 45 08 mov 0x8(%ebp),%eax

f: 89 44 24 08 mov %eax,0x8(%esp)

13: c7 44 24 04 00 00 00 movl $0x0,0x4(%esp)

1a: 00

1b: 8d 44 24 1c lea 0x1c(%esp),%eax

1f: 89 04 24 mov %eax,(%esp)

22: e8 fc ff ff ff call 23 <main+0x23>

sprintf(localBuffer,"num args is %d",argc);

Make argc arg3

arg2 is ref to constant

arg1 is ref to local
variable “localBuffer”

in stack

call sprintf

Binghamton

University

CS-220

Spring 2015

objdump –r main.o

main.o: file format elf32-i386

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

00000017 R_386_32 .rodata

00000023 R_386_PC32 sprintf

00000032 R_386_32 globalBufferInit

00000037 R_386_PC32 strcat

…

Binghamton

University

CS-220

Spring 2015

objdump –d cmd (non-relocatable)

Disassembly of section .text:

080484ac <main>:

80484ac: 55 push %ebp

…

80484b8: 8b 45 08 mov 0x8(%ebp),%eax

80484bb: 89 44 24 08 mov %eax,0x8(%esp)

80484bf: c7 44 24 04 70 86 04 movl $0x8048670,0x4(%esp)

80484c6: 08

80484c7: 8d 44 24 1c lea 0x1c(%esp),%eax

80484cb: 89 04 24 mov %eax,(%esp)

80484ce: e8 dd fe ff ff call 80483b0 <sprintf@plt>

sprintf(localBuffer,"num args is %d",argc);

Make argc arg3

arg2 is ref to constant

arg1 is ref to local
variable “localBuffer”

in stack

call sprintf

Binghamton

University

CS-220

Spring 2015

objdump –d main.o

Disassembly of section .text:

…

88: 8d 44 24 1c lea 0x1c(%esp),%eax

8c: 89 44 24 04 mov %eax,0x4(%esp)

90: c7 04 24 00 00 00 00 movl $0x0,(%esp)

97: e8 fc ff ff ff call 98 <main+0x98>

Relocation records…

00000093 R_386_32 globalBufferInit

00000098 R_386_PC32 utilFunc

utilFunc(globalBufferInit,localBuffer);

arg1 is ref to variable
“globalBufferInit”

in .data

arg2 is ref to local
variable “localBuffer”

in stack

call utilFunc

Binghamton

University

CS-220

Spring 2015

objdump –d cmd

Disassembly of section .text:

…

8048534: 8d 44 24 1c lea 0x1c(%esp),%eax

8048538: 89 44 24 04 mov %eax,0x4(%esp)

804853c: c7 04 24 a0 98 04 08 movl $0x80498a0,(%esp)

8048543: e8 44 00 00 00 call 804858c <utilFunc>>

utilFunc(globalBufferInit,localBuffer);

arg1 is ref to variable
“globalBufferInit”

in .data

arg2 is ref to local
variable “localBuffer”

in stack

call utilFunc

Binghamton

University

CS-220

Spring 2015

objdump –t main.o

main.o: file format elf32-i386

SYMBOL TABLE:

…

00000080 O *COM* 00000020 globalBuffer

00000000 g O .data 00000080 globalBufferInit

00000000 g F .text 000000d7 main

00000000 *UND* 00000000 sprintf

00000000 *UND* 00000000 strcat

00000000 *UND* 00000000 utilFunc

000000d7 g F .text 00000008 mainFunc

00000000 *UND* 00000000 printf

Binghamton

University

CS-220

Spring 2015

objdump –t cmd

cmd: file format elf32-i386

SYMBOL TABLE:

…

080499c0 g O .bss 00000080 globalBuffer

080498a0 g O .data 00000080 globalBufferInit

080484ac g F .text 000000d7 main

00000000 F *UND* 00000000 sprintf@@GLIBC_2.0

00000000 F *UND* 00000000 strcat@@GLIBC_2.0

0804858c g F .text 00000051 utilFunc

08048583 g F .text 00000008 mainFunc

00000000 F *UND* 00000000 printf@@GLIBC_2.0

Binghamton

University

CS-220

Spring 2015

Static Libraries

• Libraries of object code

• Parameters to Link Editor instruct the link editor to attempt to
resolve unresolved functions by including these libraries

• For instance, gcc “-lm” causes the link editor to include
/usr/lib32/libm.so

• Object code from these files is included in your executable file
• Makes your command larger

• Guarantees you will find these functions when you load and run your
command

Binghamton

University

CS-220

Spring 2015

Dynamically Loaded Libraries

• Link editor leaves references to functions in dynamically loaded
libraries unresolved

For instance
00000000 F *UND* 00000000 sprintf@@GLIBC_2.0

00000000 F *UND* 00000000 strcat@@GLIBC_2.0

• Link editor inserts code to load these libraries at run time
• For instance, GLIBC_2.0 library loaded at run time

• Once loaded, unresolved symbols are replaced

• Dynamic libraries take no space in executable file, but may not be
resolved (or resolved correctly) at run time

Binghamton

University

CS-220

Spring 2015

Shared Libraries

• Dynamically loaded libraries that are used by multiple commands

• Typical of C standard libraries

• More about sharing once we learn about virtual memory

