Link Edits and
Relocatable Code

Computer Systems Chapter 7.4-7.7




Binghamton CS-220

University Spring 2015

gcc —g —o ttt ttt.c

Pre-Processor my

Compiler Assembler

\./



Binghamton CS-220

University Spring 2015

gcc —g —o ttt ttt.c

main.c

Pre-Processor Linker

util.c

Compiler Assembler

~\

\/

main.o util.o



Binghamton CS-220

University Spring 2015

Example: main.c preamble

#include <stdio.h>
#include <string.h>
#include "util.h”

char globalBuffer[128];
char globalBufferlnit[128]=
"Hello World... This is an initialized global variable value”;

char * mainFunc(char * arg1,char *arg?2);



Binghamton CS-220

University Spring 2015

Example: util.h

char * utilFunc(char *p1,char *p2);



Binghamton CS-220

University Spring 2015

Example: main.c main function

int main(int argc, char **argv) {
char localBuffer[128]; int i;
sprintf(localBuffer,"num args is %d",argc);
strcat(globalBufferlnit,localBuffer);
globalBuffer[0]=0x00;
for (i=0; i<argc; i++) { strcat(globalBuffer,argvlil); }
utilFunc(globalBufferlnit,localBuffer);
printf("%s %s %s\n",

localBuffer,globalBuffer,mainFunc(globalBufferlnit,localBuffer));

return O;



Binghamton CS-220

University Spring 2015

Example: main.c mainFunc function

char * mainFunc(char * arg1,char *arg?2) {
return argl;

5



Binghamton CS-220

University Spring 2015

Example: util.c

#include <string.h>
char globUtilBuf[128];

char globUtilBuflnit[128]="This is a global in util.h";
char * utilFunc(char *p1,char *p2) {

char locUtilBuf[128];

strcpy(p1,locUtilBuf);
strcat(locUtilBuf,globUtilBuflnit);

strcpy(locUtilBuf,globUtilBuf);
return globUtilBuf;




Binghamton CS-220

University Spring 2015

Example: Makefile

cmd: main.outil.o
gcc-g -m32 -o cmd main.o util.o

main.o: main.c util.h
gcc-g -m32 -C -0 main.o main.c

util.o: util.c util.h
gcc-g -m32 -c -o util.o util.c

clean :
-rm util.o main.o cmd



Binghamton CS-220

University Spring 2015

ELF File Format — used for .o files

Program Header Table
<
Lext
<
rodata
.data

Section Header Table



Binghamton CS-220

University Spring 2015

"Reading” ELF files : objdump

 -f: Interpret ELF header
 -h : List section headers (table of contents)
* -d / -D : Disassemble x86 binary code (.text) segment
e -t/-T : Interpret symbol table
* -s: dump everything in hex
* -j<section> to restrict to a specific section

* -r : dump relocation records



Binghamton CS-220

University Spring 2015

ELF Header Information

> objdump-f main.o

main.o: file format elf32-i386

architecture: 1386, flags 0x00000011:

HAS_RELOC, HAS_SYMS

start address 0x00000000 >0objdump —f cmd
cmd: file format elf32-1386
architecture: 1386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x080483c0



Binghamton CS-220

University Spring 2015

Relocatable vs. Fixed Object Code

Relocatable Unrelocatable-Position Dependent

* References are in terms of * References are fixed addresses
offsets from registers (e.g. as well as offsets from registers
“oesp and %ebp or %eip) e All references have been

 Certain references remain resolved —no references to
references to symbols which symbols... only addresses

must be resolved when loaded Can only be loaded in one

* Can be loaded anywhere in specific place in memory
memory



Binghamton CS-220

University Spring 2015

Why Relocate?

* Keep object code flexible

* One object file can be used in multiple commands

* Might end up at different locations for different commands
* But relocatable object code is NOT executable!

* All symbolic references MUST be resolved before execution can
take place!



Binghamton CS-220

University Spring 2015

main.o: file format elf32-i386

Sections:
ldx Name Size VMA LMA File off Algn
0 .text 000000df 00000000 00000000 00000034 2**2
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
1 .data 00000080 00000000 00000000 00000120 2**5
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 00000000 00000000 00000120 2**2
ALLOC

3 .rodata 00000019 00000000 00000000 00000120 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA



Binghamton CS-220

University Spring 2015

Exa‘m p I e : m al n " C Uninitialized Global
:char globalBuffer[128]; in LR
‘char globalBufferlnit[128]=
g "Hello World... This is an initialized global variable value": in data
int main(int argc, char **argv}4

| char localBuffer[128]; int i;) in stack

sprintf(localBuffer,"num args is %d"}argc);
strcat(globalBufferlinit,localBuffer);
globalBuffer[0]=0x00}
for (i=0; i<argc; i++) { strcat(Grobe er,argvli]); } Constant
utilFunc(globalBufferlnit,localBuffer); in .rodata
printf("%s %s %s\n",

localBuffer,globalBuffer,mainFunc(globalBufferinit,localBuffer)); in(i:r?siiir;ton
return O; (.text)

Dynamic Local Variables
in stack




Binghamton

CS-220

University

objdump —s —j.data main.o

contents of section

0000 48656cb6cC
0010 68697320
0020 6c697a65
0030 6961626cC
0040 00000000
0050 00000000
0060 00000000
0070 00000000

6f20576f
69732061
6420676C
65207661
00000000
00000000
00000000
00000000

.data:

726c642e
6e20696e
6162616¢C
6c756500
00000000
00000000
00000000
00000000

2e2e2054
69746961
20766172
00000000
00000000
00000000
00000000
00000000

Spring 2015

Hello world... T
his 1s an initia
11zed global var
1able value.....



Binghamton CS-220

University Spring 2015

objdump —s —J.rodata

Ccontents of section .rodata:
0000 6e756d20 61726773 20697320 25640025 num args is %d.%
0010 73202573 2025730a 00 S %S %S..



Binghamton CS-220

University Spring 2015

objdump —d main.o

Disassembly of section .text:

sprintf(localBuffer,"num args is %d",argc);
00000000 <main>:

0: 55 push  %ebp Make argc arg3

4
c: 8b 45 08 mov 0x8 (%ebp) ,%eax arg?2 is ref to constant
f: 89 44 24 08 >(mov %eax ,0x8 (%esp)
13: «c7 44 24 04 00 00 00 | movl $0x0,0x4 (%esp)
la: 00 S J argl is ref to local
1b: 8d 44 24 1c lea Ox1c (%esp) ,%eax variable “localBuffer”
1f: 89 04 24 | mov %eax , (kesp) in stack
22: e8 fc ff ff ff call 23 <main+0x23> .




Binghamton CS-220

University Spring 2015

objdump —r main.o

main.o: file format elf32-1386

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

00000017 R_386_32 .rodata

00000023 R_386_PC32 sprintf

00000032 R_386_32 globalBufferInit

00000037 R_386_PC32 strcat



Binghamton

University

CS-220
Spring 2015

objdump —d cmd (non-relocatable)

Disassembly of section

080484ac <main>:

80484ac:

80484b8:
80484bb:
80484bf:
80484c6:
80484c7:
80484cb:
80484ce:

55

8b
89
c/
08
8d
89
ed

45
44
44

44
04
dd

08
24
24

24
24
fe

. text:

08
04 70 86 04

1c

ff ff

push

sprintf(localBuffer,"num args is %d",argc);

Make argc arg3

%ebp

arg2 is ref to constant

0x8 (%ebp) ,%eax
%eax ,0x8 (%esn

mov 1

argl is ref to local

$Ox8048670,0x4(%esp)]
variable “localBuffer”

lea

Ox1lc(%esp) ,%eax in stack
%eax , (%esp)

P
|
-
|

call

80483b0 <sprintf@plt> JM



Binghamton

CS-220

University

Spring 2015

objdump —d main.o

Disassembly of section .text:

utilFunc(globalBufferlnit,localBuffer);

arg? is ref to local
variable “localBuffer”

in stack

88: 8d 44 24 1c lTea Ox1c(%esp) ,%eax
8c: 89 44 24 04 _mov  %eax,0x4(%esp) : :

, : - argl is ref to variable
90: c7 04 24 00 00 00 0O \ mov $0X0,(/>esp) «globalBufferInlt»
97: e8 fc ff ff ff call 98 <main+0x98> in .data

Relocation records..

00000093 R_386_32 globalBufferInit

00000098 R_386_PC32 utilFunc



Binghamton

CS-220

University

objdump —d cmad

Disassembly of section .text:

8048534:
8048538:
804853c:
8048543:

8d 44 24 1c

89 44 24 04

c/7 04 24 a0 98 04 08
e8 44 00 00 00

Spring 2015

utilFunc(globalBufferlnit,localBuffer);

arg? is ref to local
variable “localBuffer”

Ve

Ox1lc(%esp) ,%eax in stack

argl is ref to variable

Tea
- mov %eax ,0x4 (%esp)
movl  $0x80498a0, (%esp)
call 804858c <utilFunc>>

“globalBufferlnit”
in .data




Binghamton CS-220

University Spring 2015

objdump —t main.o

main.o: file format elf32-1386

SYMBOL TABLE:

00000080 O *COM* 00000020 globalBuffer
00000000 g O .data 00000080 globalBufferInit
00000000 g F .text 000000d7 main

00000000 *UND* 00000000 sprintf

00000000 *UND* 00000000 strcat

00000000 *UND* 00000000 utilFunc
000000d7 ¢ F .text 00000008 mainFunc

00000000 *UND* 00000000 printf



Binghamton CS-220

University Spring 2015

objdump -t cmd

cmd: file format elf32-1386

SYMBOL TABLE:

080499c0 ¢ O .bss 00000080 globalBuffer
080498a0 ¢ O .data 00000080 globalBufferInit
080484ac ¢ F .text 000000d7 main

00000000 F *UND* 00000000 sprintf@AGLIBC_2.0
00000000 F *UND* 00000000 strcat@@GLIBC_2.0
0804858c ¢ F .text 00000051 utilFunc

08048583 ¢ F .text 00000008 mainFunc

00000000 F *UND* 00000000 printf@@GLIBC_2.0



Binghamton CS-220

University Spring 2015

Static Libraries

* Libraries of object code

* Parameters to Link Editor instruct the link editor to attempt to
resolve unresolved functions by including these libraries

* For instance, gcc “-Im” causes the link editor to include
/usr/lib32 /libm.so

* Object code from these files is included in your executable file

* Makes your command larger

* Guarantees you will find these functions when you load and run your
command



Binghamton CS-220

University Spring 2015

Dynamically Loaded Libraries

* Link editor leaves references to functions in dynamically loaded
libraries unresolved

For instance
00000000 F *UND* (00000000 sprintf@@GLIBC_2.0

00000000 F *UND* 00000000 strcat@aGLIBC_2.0

e Link editor inserts code to load these libraries at run time
* For instance, GLIBC_2.0 library loaded at run time
* Once loaded, unresolved symbols are replaced

* Dynamic libraries take no space in executable file, but may not be
resolved (or resolved correctly) at run time



Binghamton CS-220

University Spring 2015

Shared Libraries

* Dynamically loaded libraries that are used by multiple commands

 Typical of C standard libraries
* More about sharing once we learn about virtual memory



